Skip to main content

Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase

  • Chapter
  • First Online:
Macrophages

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 62))

Abstract

Nitric oxide (NO) is a bioactive gas that has multiple roles in innate and adaptive immune responses. In macrophages, nitric oxide is produced by inducible nitric oxide synthase upon microbial and cytokine stimulation. It is needed for host defense against pathogens and for immune regulation. This review will summarize the role of NO and iNOS in inflammatory and immune responses and will discuss the regulatory mechanisms that control inducible nitric oxide synthase expression and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agusti A, Morla M, Sauleda J, Saus C, Busquets X (2004) NF-kappaB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax 59(6):483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MS, Akaike T, Kubota T, Yoshitake J, Sawa T, Okamoto S (2002) Role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities role of nitric oxide in host defense in murine salmonellosis as a function of its antibacterial and antiapoptotic activities. Infect Immun 70:3130–3142. doi:10.1128/IAI.70.6.3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ara J, Przedborski S, Naini AB, Jackson-Lewis V, Trifiletti RR, Horwitz J, Ischiropoulos H (1998) Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Proc Natl Acad Sci USA 95(13):7659–7663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asahi M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N (1995) Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxicity. J Biol Chem 270(36):21035–21039

    Article  CAS  PubMed  Google Scholar 

  • Aydin M, Altintas N, Cem Mutlu L, Bilir B, Oran M, Tulubas F, Topcu B, Tayfur I, Kucukyalcin V, Kaplan G, Gurel A (2015) Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with COPD. Clin Respir J. doi:10.1111/crj.12337

    Google Scholar 

  • Baek M-W, Seong K-J, Jeong Y-J, Kim G-M, Park H-J, Kim S-H, Chung H-J, Kim W-J, Jung J-Y (2015) Nitric oxide induces apoptosis in human gingival fibroblast through mitochondria-dependent pathway and JNK activation. Int Endod J 48:287–297. doi:10.1111/iej.12314

    Article  PubMed  Google Scholar 

  • Baek KJ, Thiel BA, Lucas S, Stuehr DJ (1993) Macrophage nitric oxide synthase subunits. Purification, characterization, and role of prosthetic groups and substrate in regulating their association into a dimeric enzyme. J Biol Chem 268(28):21120–21129

    CAS  PubMed  Google Scholar 

  • Bao F, Wu P, Xiao N, Qiu F, Zeng QP (2012) Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice. PLoS One 7:1–13. doi:10.1371/journal.pone.0034494

    Google Scholar 

  • Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320(5879):1050–1054. doi:10.1126/science.1158265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boese M, Busse R, Mulsch A, Schini-Kerth V (1996) Effect of cyclic GMP-dependent vasodilators on the expression of inducible nitric oxide synthase in vascular smooth muscle cells: role of cyclic AMP. Br J Pharmacol 119(4):707–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916. doi:10.1038/ni1001-907

    Article  CAS  PubMed  Google Scholar 

  • Borutaite V, Morkuniene R, Arandarcikaite O, Jekabsone A, Barauskaite J, Brown GC (2009) Nitric oxide protects the heart from ischemia-induced apoptosis and mitochondrial damage via protein kinase G mediated blockage of permeability transition and cytochrome c release. J Biomed Sci 16:70. doi:10.1186/1423-0127-16-70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borutaite V, Morkuniene R, Brown GC (1999) Release of cytochrome c from heart mitochondria is induced by high Ca2+ and peroxynitrite and is responsible for Ca(2+)-induced inhibition of substrate oxidation. Biochim Biophys Acta 1453(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Brand MP, Heales SJ, Land JM, Clark JB (1995) Tetrahydrobiopterin deficiency and brain nitric oxide synthase in the hph1 mouse. J Inherit Metab Dis 18(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Bredt DS, Snyder SH (1990) Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA 87(2):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruch-Gerharz D, Fehsel K, Suschek C, Michel G, Ruzicka T, Kolb-Bachofen V (1996) A proinflammatory activity of interleukin 8 in human skin: expression of the inducible nitric oxide synthase in psoriatic lesions and cultured keratinocytes. J Exp Med 184(5):2007–2012

    Article  CAS  PubMed  Google Scholar 

  • Brunner M, Gruber M, Schmid D, Baran H, Moeslinger T (2015) Proliferation of macrophages due to the inhibition of inducible nitric oxide synthesis by oxidized low-density lipoproteins. EXCLI J 14:439–451. doi:10.17179/excli2015–151

    Google Scholar 

  • Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, Schmitz K, Kleinert H, Pautz A (2013) Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide Biol Chem Off J Nitric Oxide Soc 33:6–17. doi:10.1016/j.niox.2013.05.002

    Article  CAS  Google Scholar 

  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275(28):21409–21415. doi:10.1074/jbc.M909978199

    Article  CAS  PubMed  Google Scholar 

  • Castilho ÁF, Aveleira CA, Leal EC, Simões NF, Fernandes CR, Meirinhos RI, Baptista FI, Ambrósio AF (2012) Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One 7:e42428. doi:10.1371/journal.pone.0042428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA (2005) Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol 175(6):3846–3861

    Article  CAS  PubMed  Google Scholar 

  • Chartrain NA, Geller DA, Koty PP, Sitrin NF, Nussler AK, Hoffman EP, Billiar TR, Hutchinson NI, Mudgett JS (1994) Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem 269(9):6765–6772

    CAS  PubMed  Google Scholar 

  • Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M (2001) AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107(4):451–464

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Kong X, Fu J, Xu Y, Fang S, Hua P, Luo L, Yin Z (2009) CHIP facilitates ubiquitination of inducible nitric oxide synthase and promotes its proteasomal degradation. Cell Immunol 258(1):38–43. doi:10.1016/j.cellimm.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Cheng A, Chan SL, Milhavet O, Wang S, Mattson MP (2001) p38 MAP kinase mediates nitric oxide-induced apoptosis of neural progenitor cells. J Biol Chem 276(46):43320–43327. doi:10.1074/jbc.M107698200

    Article  CAS  PubMed  Google Scholar 

  • Choi BM, Pae HO, Chung HT (2003) Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radic Biol Med 34:1136–1145. doi:10.1016/S0891-5849(03)00064-9

    Article  CAS  PubMed  Google Scholar 

  • Choi HS, Rai PR, Chu HW, Cool C, Chan ED (2002) Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am J Respir Crit Care Med 166(2):178–186

    Article  PubMed  Google Scholar 

  • Choy JC, Pober JS (2009) Generation of NO by bystander human CD8 T cells augments allogeneic responses by inhibiting cytokine deprivation-induced cell death. Am J Transplant 9:2281–2291. doi:10.1111/j.1600-6143.2009.02771.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choy JC, Wang Y, Tellides G, Pober JS (2007) Induction of inducible NO synthase in bystander human T cells increases allogeneic responses in the vasculature. Proc Natl Acad Sci USA 104:1313–1318. doi:10.1073/pnas.0607731104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciani E, Guidi S, Bartesaghi R, Contestabile A (2002) Nitric oxide regulates cGMP-dependent cAMP-responsive element binding protein phosphorylation and Bcl-2 expression in cerebellar neurons: implication for a survival role of nitric oxide. J Neurochem 82:1282–1289

    Article  CAS  PubMed  Google Scholar 

  • Cobb JP, Hotchkiss RS, Swanson PE, Chang K, Qiu Y, Laubach VE, Karl IE, Buchman TG (1999) Inducible nitric oxide synthase (iNOS) gene deficiency increases the mortality of sepsis in mice. Surgery 126:438–442

    Article  CAS  PubMed  Google Scholar 

  • Coquet JM, Rausch L, Borst J (2015) The importance of co-stimulation in the orchestration of T helper cell differentiation. Immunol Cell Biol 93(9):780–788. doi:10.1038/icb.2015.45

    Article  CAS  PubMed  Google Scholar 

  • Cosentino F, Patton S, d’Uscio LV, Werner ER, Werner-Felmayer G, Moreau P, Malinski T, Luscher TF (1998) Tetrahydrobiopterin alters superoxide and nitric oxide release in prehypertensive rats. J Clin Invest 101(7):1530–1537. doi:10.1172/JCI650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane BR, Arvai AS, Gachhui R, Wu C, Ghosh DK, Getzoff ED, Stuehr DJ, Tainer JA (1997) The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science 278(5337):425–431

    Article  CAS  PubMed  Google Scholar 

  • Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science 279(5359):2121–2126

    Article  CAS  PubMed  Google Scholar 

  • Dal Secco D, Moreira AP, Freitas A, Silva JS, Rossi MA, Ferreira SH, Cunha FQ (2006) Nitric oxide inhibits neutrophil migration by a mechanism dependent on ICAM-1: role of soluble guanylate cyclase. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 15(1):77–86. doi:10.1016/j.niox.2006.02.004

    Article  CAS  Google Scholar 

  • de Oca MM, Torres SH, De Sanctis J, Mata A, Hernández N, Tálamo C (2005) Skeletal muscle inflammation and nitric oxide in patients with COPD. Eur Respir J 26:390–397. doi:10.1183/09031936.05.00107404

    Article  CAS  Google Scholar 

  • de Vera ME, Shapiro RA, Nussler AK, Mudgett JS, Simmons RL, Morris SM Jr, Billiar TR, Geller DA (1996) Transcriptional regulation of human inducible nitric oxide synthase (NOS2) gene by cytokines: initial analysis of the human NOS2 promoter. Proc Natl Acad Sci USA 93(3):1054–1059

    Article  PubMed  PubMed Central  Google Scholar 

  • DeLeo FR, Allen LA, Apicella M, Nauseef WM (1999) NADPH oxidase activation and assembly during phagocytosis. J Immunol 163(12):6732–6740

    CAS  PubMed  Google Scholar 

  • Dey P, Panga V, Raghunathan S (2016) A cytokine signalling network for the regulation of inducible nitric oxide synthase expression in rheumatoid arthritis. PLoS One 11(9):e0161306. doi:10.1371/journal.pone.0161306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz-Cazorla M, Perez-Sala D, Lamas S (1999) Dual effect of nitric oxide donors on cyclooxygenase-2 expression in human mesangial cells. J Am Soc Nephrol JASN 10(5):943–952

    CAS  PubMed  Google Scholar 

  • Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997a) Suppression of apoptosis by nitric oxide via inhibition of ICE-like and CPP-32-like proteases. J Exp Med 185:601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997b) Angiotensin II induces apoptosis of human endothelial cells. Circ Res 81

    Google Scholar 

  • Ding H, Hong C, Wang Y, Liu J, Zhang N, Shen C, Wei W, Zheng F (2014) Calreticulin promotes angiogenesis via activating nitric oxide signalling pathway in rheumatoid arthritis. Clin Exp Immunol 178(2):236–244. doi:10.1111/cei.12411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Plessis J, Vanheel H, Janssen CE, Roos L, Slavik T, Stivaktas PI, Nieuwoudt M, van Wyk SG, Vieira W, Pretorius E, Beukes M, Farre R, Tack J, Laleman W, Fevery J, Nevens F, Roskams T, Van der Merwe SW (2013) Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol 58(6):1125–1132. doi:10.1016/j.jhep.2013.01.038

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. doi:10.1080/01926230701320337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fechir M, Linker K, Pautz A, Hubrich T, Forstermann U, Rodriguez-Pascual F, Kleinert H (2005a) Tristetraprolin regulates the expression of the human inducible nitric-oxide synthase gene. Mol Pharmacol 67(6):2148–2161. doi:10.1124/mol.104.008763

    Article  CAS  PubMed  Google Scholar 

  • Fechir M, Linker K, Pautz A, Hubrich T, Kleinert H (2005b) The RNA binding protein TIAR is involved in the regulation of human iNOS expression. Cell Mol Biol (Noisy-le-Grand) 51(3):299–305

    CAS  Google Scholar 

  • Ford PC, Wink DA, Stanbury DM (1993) Autoxidation kinetics of aqueous nitric oxide. FEBS Lett 326(1–3):1–3

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Torres M (2001) Redox signaling in macrophages. Mol Aspects Med 22(4–5):189–216

    Article  CAS  PubMed  Google Scholar 

  • Francescutti D, Baldwin J, Lee L, Mutus B (1996) Peroxynitrite modification of glutathione reductase: modeling studies and kinetic evidence suggest the modification of tyrosines at the glutathione disulfide binding site. Protein Eng 9(2):189–194

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Sawa T, Ihara H, Tong KI, Ida T, Okamoto T, Ahtesham AK, Ishima Y, Motohashi H, Yamamoto M, Akaike T (2010) The critical role of nitric oxide signaling, via protein S-guanylation and nitrated cyclic GMP, in the antioxidant adaptive response. J Biol Chem 285(31):23970–23984. doi:10.1074/jbc.M110.145441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288(5789):373–376

    Article  CAS  PubMed  Google Scholar 

  • Ganster RW, Taylor BS, Shao L, Geller DA (2001) Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA 98(15):8638–8643. doi:10.1073/pnas.151239498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Wilusz CJ, Peltz SW, Wilusz J (2001) A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J 20(5):1134–1143. doi:10.1093/emboj/20.5.1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR (1993) Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc Natl Acad Sci USA 90(8):3491–3495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genaro AM, Hortelano S, Alvarez A, Martínez C, Boscá L (1995) Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels. J Clin Invest 95:1884–1890. doi:10.1172/JCI117869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghafourifar P, Schenk U, Klein SD, Richter C (1999) Mitochondrial nitric-oxide synthase stimulation causes cytochrome c release from isolated mitochondria. Evidence for intramitochondrial peroxynitrite formation. J Biol Chem 274(44):31185–31188

    Article  CAS  PubMed  Google Scholar 

  • Giordano D, Draves KE, Li C, Hohl TM, Clark EA (2014) Nitric oxide regulates BAFF expression and T cell-independent antibody responses. J Immunol 193(3):1110–1120. doi:10.4049/jimmunol.1303158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanelli J, Campos KL, Kaufman S (1991) Tetrahydrobiopterin, a cofactor for rat cerebellar nitric oxide synthase, does not function as a reactant in the oxygenation of arginine. Proc Natl Acad Sci USA 88(16):7091–7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griscavage JM, Fukuto JM, Komori Y, Ignarro LJ (1994) Nitric oxide inhibits neuronal nitric oxide synthase by interacting with the heme prosthetic group. Role of tetrahydrobiopterin in modulating the inhibitory action of nitric oxide. J Biol Chem 269(34):21644–21649

    CAS  PubMed  Google Scholar 

  • Guner YS, Ochoa CJ, Wang J, Zhang X, Steinhauser S, Stephenson L, Grishin A, Upperman JS (2009) Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem Biophys Res Commun 384:221–225. doi:10.1016/j.bbrc.2009.04.091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Shao L, Feng X, Reid K, Marderstein E, Nakao A, Geller DA (2003) A critical role for C/EBPbeta binding to the AABS promoter response element in the human iNOS gene. FASEB J Off Publ Fed Am Soc Exp Biol 17(12):1718–1720. doi:10.1096/fj.02-1172fje

    CAS  Google Scholar 

  • Guo Z, Shao L, Zheng L, Du Q, Li P, John B, Geller DA (2012) miRNA-939 regulates human inducible nitric oxide synthase posttranscriptional gene expression in human hepatocytes. Proc Natl Acad Sci USA 109(15):5826–5831. doi:10.1073/pnas.1118118109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Zheng L, Liao X, Geller D (2016) Up-regulation of human inducible nitric oxide synthase by p300 transcriptional complex. PLoS One 11(1):e0146640. doi:10.1371/journal.pone.0146640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674. doi:10.1038/ncb1268

    Article  CAS  PubMed  Google Scholar 

  • Hebestreit H, Dibbert B, Balatti I, Braun D, Schapowal A, Blaser K, Simon H-U (1998) Disruption of Fas Receptor Signaling by Nitric Oxide in Eosinophils. J Exp Med 187:415–425. doi:10.1084/jem.187.3.415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166. doi:10.1038/nrm1569

    Article  CAS  PubMed  Google Scholar 

  • Heusch P, Aker S, Boengler K, Deindl E, van de Sand A, Klein K, Rassaf T, Konietzka I, Sewell A, Menazza S, Canton M, Heusch G, Di Lisa F, Schulz R (2010) Increased inducible nitric oxide synthase and arginase II expression in heart failure: no net nitrite/nitrate production and protein S-nitrosylation. Am J Phys Heart Circ Phys 299(2):H446–H453. doi:10.1152/ajpheart.01034.2009

    CAS  Google Scholar 

  • Hevel JM, Marletta MA (1992) Macrophage nitric oxide synthase: relationship between enzyme-bound tetrahydrobiopterin and synthase activity. Biochemistry 31(31):7160–7165

    Article  CAS  PubMed  Google Scholar 

  • Hua LL, Zhao ML, Cosenza M, Kim MO, Huang H, Tanowitz HB, Brosnan CF, Lee SC (2002) Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFalpha expression in human fetal astrocytes. J Neuroimmunol 126(1–2):180–189

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Ratovitski EA (2010) Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation. J Biol Chem 285(53):41422–41431. doi:10.1074/jbc.M110.158642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Koelle P, Fendler M, Schröttle A, Czihal M, Hoffmann U, Conrad M, Kuhlencordt PJ (2014) Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration. Atherosclerosis 235:213–222. doi:10.1016/j.atherosclerosis.2014.04.020

    Article  CAS  PubMed  Google Scholar 

  • Huang FP, Niedbala W, Wei XQ, Xu D, Feng GJ, Robinson JH, Lam C, Liew FY (1998) Nitric oxide regulates Th1 cell development through the inhibition of IL-12 synthesis by macrophages. Eur J Immunol 28(12):4062–4070. doi:10.1002/(SICI)1521-4141(199812)28:12<4062::AID-IMMU4062>3.0.CO;2-K

    Article  CAS  PubMed  Google Scholar 

  • Huie RE, Padmaja S (1993) The reaction of no with superoxide. Free Radic Res Commun 18(4):195–199

    Article  CAS  PubMed  Google Scholar 

  • Hunter GC, Henderson AM, Westerband A, Kobayashi H, Suzuki F, Yan Z-Q, Sirsjo A, Putnam CW, Hansson GK, Krupski W (1999) The contribution of inducible nitric oxide and cytomegalovirus to the stability of complex carotid plaque. J Vasc Surg 30:36–50. doi:10.1016/S0741-5214(99)70174-6

    Article  CAS  PubMed  Google Scholar 

  • Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 84(24):9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilmarinen-Salo P, Moilanen E, Kinnula VL, Kankaanranta H (2012) Nitric oxide-induced eosinophil apoptosis is dependent on mitochondrial permeability transition (mPT), JNK and oxidative stress: apoptosis is preceded but not mediated by early mPT-dependent JNK activation. Respir Res 13:73. doi:10.1186/1465-9921-13-73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM (2009) S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen 17:224–229. doi:10.1111/j.1524-475X.2009.00459.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Jianjun Y, Zhang R, Lu G, Shen Y, Peng L, Zhu C, Cui M, Wang W, Arnaboldi P, Tang M, Gupta M, Qi CF, Jayaraman P, Zhu H, Jiang B, Chen SH, He JC, Ting AT, Zhou MM, Kuchroo VK, Morse HC 3rd, Ozato K, Sikora AG, Xiong H (2013) T cell-derived inducible nitric oxide synthase switches off Th17 cell differentiation. J Exp Med 210(7):1447–1462. doi:10.1084/jem.20122494

    Article  CAS  Google Scholar 

  • Jin C, Guo J, Qiu X, Ma K, Xiang M, Zhu X, Guo J (2014) IGF-1 induces iNOS expression via the p38 MAPK signal pathway in the anti-apoptotic process in pulmonary artery smooth muscle cells during PAH. J Recept Signal Transduct 34:325–331. doi:10.3109/10799893.2014.903417

    Article  CAS  Google Scholar 

  • Jorens PG, Matthys KE, Bult H (1995) Modulation of nitric oxide synthase activity in macrophages. Mediators Inflamm 4(2):75–89. doi:10.1155/S0962935195000135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamijo R, Harada H, Matsuyama T, Bosland M, Gerecitano J, Shapiro D, Le J, Koh SI, Kimura T, Green SJ et al (1994) Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263(5153):1612–1615

    Article  CAS  PubMed  Google Scholar 

  • Kamisaki Y, Wada K, Bian K, Balabanli B, Davis K, Martin E, Behbod F, Lee YC, Murad F (1998) An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc Natl Acad Sci USA 95(20):11584–11589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatsenko OG, Gross SS, Rifkind AB, Vane JR (1993) Nitric oxide is a mediator of the decrease in cytochrome P450-dependent metabolism caused by immunostimulants. Proc Natl Acad Sci USA 90(23):11147–11151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Lahl K, Hori S, Loddenkemper C, Chaudhry A, deRoos P, Rudensky A, Sparwasser T (2009a) Cutting edge: depletion of Foxp3+ cells leads to induction of autoimmunity by specific ablation of regulatory T cells in genetically targeted mice. J Immunol 183(12):7631–7634. doi:10.4049/jimmunol.0804308

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Bugaj LJ, Oh YJ, Bivalacqua TJ, Ryoo S, Soucy KG, Santhanam L, Webb A, Camara A, Sikka G, Nyhan D, Shoukas AA, Ilies M, Christianson DW, Champion HC, Berkowitz DE (2009b) Arginase inhibition restores NOS coupling and reverses endothelial dysfunction and vascular stiffness in old rats. J Appl Physiol 107(4):1249–1257. doi:10.1152/japplphysiol.91393.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-M, Bergonia H, Lancaster JR (1995) Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett 374:228–232. doi:10.1016/0014-5793(95)01115-U

    Article  CAS  PubMed  Google Scholar 

  • Kim HA, Lee KB, Bae S-C (2005) The mechanism of low-concentration sodium nitroprusside-mediated protection of chondrocyte death. Arthritis Res Ther 7:R526–R535. doi:10.1186/ar1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y-M, Talanian RV, Billiar TR (1997) Nitric oxide inhibits apoptosis by preventing increases in Caspase-3-like activity via two distinct mechanisms. J Biol Chem 272:31138–31148

    Article  CAS  PubMed  Google Scholar 

  • Klatt P, Schmid M, Leopold E, Schmidt K, Werner ER, Mayer B (1994) The pteridine binding site of brain nitric oxide synthase. Tetrahydrobiopterin binding kinetics, specificity, and allosteric interaction with the substrate domain. J Biol Chem 269(19):13861–13866

    CAS  PubMed  Google Scholar 

  • Klatt P, Schmidt K, Lehner D, Glatter O, Bachinger HP, Mayer B (1995) Structural analysis of porcine brain nitric oxide synthase reveals a role for tetrahydrobiopterin and L-arginine in the formation of an SDS-resistant dimer. EMBO J 14(15):3687–3695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleinert H, Wallerath T, Fritz G, Ihrig-Biedert I, Rodriguez-Pascual F, Geller DA, Forstermann U (1998) Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kappaB-signaling pathways. Br J Pharmacol 125(1):193–201. doi:10.1038/sj.bjp.0702039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298(Pt 2):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolios G, Valatas V, Ward SG (2004) Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113(4):427–437. doi:10.1111/j.1365-2567.2004.01984.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejski PJ, Koo JS, Eissa NT (2004) Regulation of inducible nitric oxide synthase by rapid cellular turnover and cotranslational down-regulation by dimerization inhibitors. Proc Natl Acad Sci USA 101(52):18141–18146. doi:10.1073/pnas.0406711102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejski PJ, Musial A, Koo JS, Eissa NT (2002) Ubiquitination of inducible nitric oxide synthase is required for its degradation. Proc Natl Acad Sci USA 99(19):12315–12320. doi:10.1073/pnas.192345199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolodziejski PJ, Rashid MB, Eissa NT (2003) Intracellular formation of “undisruptable” dimers of inducible nitric oxide synthase. Proc Natl Acad Sci USA 100(24):14263–14268. doi:10.1073/pnas.2435290100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolyada AY, Madias NE (2001) Transcriptional regulation of the human iNOS gene by IL-1beta in endothelial cells. Mol Med 7(5):329–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kong SK, Yim MB, Stadtman ER, Chock PB (1996) Peroxynitrite disables the tyrosine phosphorylation regulatory mechanism: lymphocyte-specific tyrosine kinase fails to phosphorylate nitrated cdc2(6-20)NH2 peptide. Proc Natl Acad Sci USA 93(8):3377–3382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korhonen R, Linker K, Pautz A, Forstermann U, Moilanen E, Kleinert H (2007) Post-transcriptional regulation of human inducible nitric-oxide synthase expression by the Jun N-terminal kinase. Mol Pharmacol 71(5):1427–1434. doi:10.1124/mol.106.033449

    Article  CAS  PubMed  Google Scholar 

  • Korkmaz A, Oter S, Seyrek M, Topal T (2009) Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity. Interdiscip Toxicol 2:219–228. doi:10.2478/v10102-009-0020-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kovacs KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (2003) CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 278(38):36959–36965. doi:10.1074/jbc.M303147200

    Article  CAS  PubMed  Google Scholar 

  • Kristof AS, Marks-Konczalik J, Moss J (2001) Mitogen-activated protein kinases mediate activator protein-1-dependent human inducible nitric-oxide synthase promoter activation. J Biol Chem 276(11):8445–8452. doi:10.1074/jbc.M009563200

    Article  CAS  PubMed  Google Scholar 

  • Kuo WN, Kanadia RN, Shanbhag VP, Toro R (1999) Denitration of peroxynitrite-treated proteins by ‘protein nitratases’ from rat brain and heart. Mol Cell Biochem 201(1–2):11–16

    Article  CAS  PubMed  Google Scholar 

  • Kuzushima M, Mogi M, Togari A (2006) Cytokine-induced nitric-oxide-dependent apoptosis in mouse osteoblastic cells: Involvement of p38MAP kinase. Arch Oral Biol 51:1048–1053. doi:10.1016/j.archoralbio.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  • Kwon S, Newcomb RL, George SC (2001) Mechanisms of synergistic cytokine-induced nitric oxide production in human alveolar epithelial cells. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 5(6):534–546. doi:10.1006/niox.2001.0387

    Article  CAS  Google Scholar 

  • Lamas S, Marsden PA, Li GK, Tempst P, Michel T (1992) Endothelial nitric oxide synthase: molecular cloning and characterization of a distinct constitutive enzyme isoform. Proc Natl Acad Sci USA 89(14):6348–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189. doi:10.1038/nri1312

    Article  CAS  PubMed  Google Scholar 

  • Lamont EA, Xu WW, Sreevatsan S (2013) Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 14:694. doi:10.1186/1471-2164-14-694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander HM, Ogiste JS, Pearce SF, Levi R, Novogrodsky A (1995) Nitric oxide-stimulated guanine nucleotide exchange on p21ras. J Biol Chem 270(13):7017–7020

    Article  CAS  PubMed  Google Scholar 

  • Lander HM, Sehajpal P, Levine DM, Novogrodsky A (1993) Activation of human peripheral blood mononuclear cells by nitric oxide-generating compounds. J Immunol 150(4):1509–1516

    CAS  PubMed  Google Scholar 

  • Landes MB, Rajaram MV, Nguyen H, Schlesinger LS (2015) Role for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophages. J Leukoc Biol 97(6):1111–1119. doi:10.1189/jlb.3A1114-557R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landino LM, Crews BC, Timmons MD, Morrow JD, Marnett LJ (1996) Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA 93(26):15069–15074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Choy JC (2013) Positive feedback regulation of human inducible nitric-oxide synthase expression by Ras protein S-nitrosylation. J Biol Chem 288(22):15677–15686. doi:10.1074/jbc.M113.475319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Choi H, Eun SY, Fukuyama S, Croft M (2011) Nitric oxide modulates TGF-beta-directive signals to suppress Foxp3+ regulatory T cell differentiation and potentiate Th1 development. J Immunol 186(12):6972–6980. doi:10.4049/jimmunol.1100485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Wan A (2013) Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflamm 2013:1–8. doi:10.1155/2013/953462

    Google Scholar 

  • Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY (2007) Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell 26(1):63–74. doi:10.1016/j.molcel.2007.02.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Libby P, Lichtman AH, Hansson GK (2013) Immune effector mechanisms implicated in atherosclerosis: from mice to humans. Immunity 38(6):1092–1104. doi:10.1016/j.immuni.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi:10.1161/hc0902.104353

    Article  CAS  PubMed  Google Scholar 

  • Linker K, Pautz A, Fechir M, Hubrich T, Greeve J, Kleinert H (2005) Involvement of KSRP in the post-transcriptional regulation of human iNOS expression-complex interplay of KSRP with TTP and HuR. Nucleic Acids Res 33(15):4813–4827. doi:10.1093/nar/gki797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linn SC, Morelli PJ, Edry I, Cottongim SE, Szabo C, Salzman AL (1997) Transcriptional regulation of human inducible nitric oxide synthase gene in an intestinal epithelial cell line. Am J Physiol 272(6 Pt 1):G1499–G1508

    CAS  PubMed  Google Scholar 

  • Liu XM, Peyton KJ, Ensenat D, Wang H, Hannick M, Alam J, Durante W (2007) Nitric oxide stimulates hemeoxygenase-1 gene transcription via the Nrf2/ARE complex to promote vascular smooth muscle cell survival. Cardiovasc Res 75(2):381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowenstein CJ, Glatt CS, Bredt DS, Snyder SH (1992) Cloned and expressed macrophage nitric oxide synthase contrasts with the brain enzyme. Proc Natl Acad Sci USA 89(15):6711–6715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyons CR, Orloff GJ, Cunningham JM (1992) Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem 267(9):6370–6374

    CAS  PubMed  Google Scholar 

  • MacMicking J, Xie QW, Nathan C (1997a) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350. doi:10.1146/annurev.immunol.15.1.323

    Article  CAS  PubMed  Google Scholar 

  • MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997b) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA 94:5243–5248. doi:10.1073/pnas.94.10.5243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi:10.1016/j.it.2004.09.015

    Article  CAS  PubMed  Google Scholar 

  • Marks-Konczalik J, Chu SC, Moss J (1998) Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor kappaB-binding sites. J Biol Chem 273(35):22201–22208

    Article  CAS  PubMed  Google Scholar 

  • Marletta MA (1993) Nitric oxide synthase structure and mechanism. J Biol Chem 268(17):12231–12234

    CAS  PubMed  Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27(24):8706–8711

    Article  CAS  PubMed  Google Scholar 

  • Mayer B, Klatt P, Werner ER, Schmidt K (1995) Kinetics and mechanism of tetrahydrobiopterin-induced oxidation of nitric oxide. J Biol Chem 270(2):655–659

    Article  CAS  PubMed  Google Scholar 

  • Mazumdar T, Gorgun FM, Sha Y, Tyryshkin A, Zeng S, Hartmann-Petersen R, Jorgensen JP, Hendil KB, Eissa NT (2010) Regulation of NF-kappaB activity and inducible nitric oxide synthase by regulatory particle non-ATPase subunit 13 (Rpn13). Proc Natl Acad Sci USA 107(31):13854–13859. doi:10.1073/pnas.0913495107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei JM, Borchert GL, Donald SP, Phang JM (2002) Matrix metalloproteinase(s) mediate(s) NO-induced dissociation of beta-catenin from membrane bound E-cadherin and formation of nuclear beta-catenin/LEF-1 complex. Carcinogenesis 23(12):2119–2122

    Article  CAS  PubMed  Google Scholar 

  • Mellott JK, Nick HS, Waters MF, Billiar TR, Geller DA, Chesrown SE (2001) Cytokine-induced changes in chromatin structure and in vivo footprints in the inducible NOS promoter. Am J Physiol Lung Cell Mol Physiol 280(3):L390–L399

    CAS  PubMed  Google Scholar 

  • Meurs H, Maarsingh H, Zaagsma J (2003) Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 24(9):450–455. doi:10.1016/S0165-6147(03)00227-X

    Article  CAS  PubMed  Google Scholar 

  • Miller RT, Martasek P, Raman CS, Masters BS (1999) Zinc content of Escherichia coli-expressed constitutive isoforms of nitric-oxide synthase. Enzymatic activity and effect of pterin. J Biol Chem 274(21):14537–14540

    Article  CAS  PubMed  Google Scholar 

  • Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  CAS  PubMed  Google Scholar 

  • Milstien S, Katusic Z (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem Biophys Res Commun 263(3):681–684. doi:10.1006/bbrc.1999.1422

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DA, Marletta MA (2005) Thioredoxin catalyzes the S-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol 1(3):154–158. doi:10.1038/nchembio720

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DA, Erwin PA, Michel T, Marletta MA (2005) S-Nitrosation and regulation of inducible nitric oxide synthase. Biochemistry 44(12):4636–4647. doi:10.1021/bi0474463

    Article  CAS  PubMed  Google Scholar 

  • Muhl H, Pfeilschifter J (1995) Amplification of nitric oxide synthase expression by nitric oxide in interleukin 1 beta-stimulated rat mesangial cells. J Clin Invest 95(4):1941–1946. doi:10.1172/JCI117876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee D, Gao M, O’Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J (2002) The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21(1–2):165–174. doi:10.1093/emboj/21.1.165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munder M, Eichmann K, Moran JM, Centeno F, Soler G, Modolell M (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163(7):3771–3777

    CAS  PubMed  Google Scholar 

  • Musial A, Eissa NT (2001) Inducible nitric-oxide synthase is regulated by the proteasome degradation pathway. J Biol Chem 276(26):24268–24273. doi:10.1074/jbc.M100725200

    Article  CAS  PubMed  Google Scholar 

  • Nagy G, Barcza M, Gonchoroff N, Phillips PE, Perl A (2004) Nitric oxide-dependent mitochondrial biogenesis generates Ca2+ signaling profile of lupus T cells. J Immunol 173(6):3676–3683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natal C, Modol T, Ja O-P, López-Moratalla N, Iraburu MJ, López-Zabalza MJ (2008) Specific protein nitration in nitric oxide-induced apoptosis of human monocytes. Apoptosis Int J Programmed Cell Death 13:1356–1367. doi:10.1007/s10495-008-0263-0

    Article  CAS  Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J Off Publ Fed Am Soc Exp Biol 6(12):3051–3064

    CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78(6):915–918

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Brunson D, Crespi CL, Penman BW, Wishnok JS, Tannenbaum SR (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 89(7):3030–3034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson S, Bonecini-Almeida Mda G, Lapa e Silva JR, Nathan C, Xie QW, Mumford R, Weidner JR, Calaycay J, Geng J, Boechat N, Linhares C, Rom W, Ho JL (1996) Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 183(5):2293–2302

    Article  CAS  PubMed  Google Scholar 

  • Niedbala W, Alves-Filho JC, Fukada SY, Vieira SM, Mitani A, Sonego F, Mirchandani A, Nascimento DC, Cunha FQ, Liew FY (2011) Regulation of type 17 helper T-cell function by nitric oxide during inflammation. Proc Natl Acad Sci 108:9220–9225. doi:10.1073/pnas.1100667108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niedbala W, Wei XQ, Piedrafita D, Xu D, Liew FY (1999) Effects of nitric oxide on the induction and differentiation of Th1 cells. Eur J Immunol 29(8):2498–2505. doi:10.1002/(SICI)1521-4141(199908)29:08<2498::AID-IMMU2498>3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  • Niles JC, Wishnok JS, Tannenbaum SR (2006) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 14:109–121. doi:10.1016/j.niox.2005.11.001

    Article  CAS  Google Scholar 

  • Nowling TK, Gilkeson GS (2011) Mechanisms of tissue injury in lupus nephritis. Arthritis Res Ther 13(6):250. doi:10.1186/ar3528

    Article  PubMed  PubMed Central  Google Scholar 

  • Oates JC, Gilkeson GS (2006) The biology of nitric oxide and other reactive intermediates in systemic lupus erythematosus. Clin Immunol 121(3):243–250. doi:10.1016/j.clim.2006.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obermajer N, Wong JL, Edwards RP, Chen K, Scott M, Khader S, Kolls JK, Odunsi K, Billiar TR, Kalinski P (2013) Induction and stability of human Th17 cells require endogenous NOS2 and cGMP-dependent NO signaling. J Exp Med 210:1433–1445. doi:10.1084/jem.20121277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osoata GO, Ito M, Elliot M, Hogg J, Barnes PJ, Ito K (2012) Reduced denitration activity in peripheral lung of chronic obstructive pulmonary disease. Tanaffos 11(4):23–29

    PubMed  PubMed Central  Google Scholar 

  • Padgett EL, Pruett SB (1992) Evaluation of nitrite production by human monocyte-derived macrophages. Biochem Biophys Res Commun 186(2):775–781

    Article  CAS  PubMed  Google Scholar 

  • Padmaja S, Squadrito GL, Pryor WA (1998) Inactivation of glutathione peroxidase by peroxynitrite. Arch Biochem Biophys 349(1):1–6. doi:10.1006/abbi.1997.0407

    Article  CAS  PubMed  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526. doi:10.1038/327524a0

    Article  CAS  PubMed  Google Scholar 

  • Perez-Sala D, Cernuda-Morollon E, Diaz-Cazorla M, Rodriguez-Pascual F, Lamas S (2001) Posttranscriptional regulation of human iNOS by the NO/cGMP pathway. Am J Physiol Renal Physiol 280(3):F466–F473

    CAS  PubMed  Google Scholar 

  • Pircher A, Treps L, Bodrug N, Carmeliet P (2016) Endothelial cell metabolism: a novel player in atherosclerosis? Basic principles and therapeutic opportunities. Atherosclerosis. doi:10.1016/j.atherosclerosis.2016.08.011

    PubMed  Google Scholar 

  • Poljakovic M, Persson K (2003) Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide. Am J Physiol Renal Physiol 284:F22–F31

    Article  CAS  PubMed  Google Scholar 

  • Rajaram K, Nelson DE (2015) Chlamydia muridarum infection of macrophages elicits bactericidal nitric oxide production via reactive oxygen species and cathepsin B. Infect Immun 83(8):3164–3175. doi:10.1128/IAI.00382-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed Z, Al-Shobaili HA, Al Robaee AA, Alzolibani AA, Wadi WI, Khan MI, Al-Hamed HA (2012) Preferential recognition of peroxynitrite damaged thymidine-monophosphate by anti-DNA autoantibodies in systemic lupus erythematosus. Nucleosides Nucleotides Nucleic Acids 31(10):736–751. doi:10.1080/15257770.2012.724135

    Article  CAS  PubMed  Google Scholar 

  • Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF, van der Vliet A, Janssen-Heininger YM (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci USA 101(24):8945–8950. doi:10.1073/pnas.0400588101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Pascual F, Hausding M, Ihrig-Biedert I, Furneaux H, Levy AP, Forstermann U, Kleinert H (2000) Complex contribution of the 3′-untranslated region to the expressional regulation of the human inducible nitric-oxide synthase gene. Involvement of the RNA-binding protein HuR. J Biol Chem 275(34):26040–26049. doi:10.1074/jbc.M910460199

    Article  CAS  PubMed  Google Scholar 

  • Saha RN, Pahan K (2006) Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal 8(5–6):929–947. doi:10.1089/ars.2006.8.929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santhanam L, Lim HK, Lim HK, Miriel V, Brown T, Patel M, Balanson S, Ryoo S, Anderson M, Irani K, Khanday F, Di Costanzo L, Nyhan D, Hare JM, Christianson DW, Rivers R, Shoukas A, Berkowitz DE (2007) Inducible NO synthase dependent S-nitrosylation and activation of arginase1 contribute to age-related endothelial dysfunction. Circ Res 101(7):692–702. doi:10.1161/CIRCRESAHA.107.157727

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Bharwani S, Jordan P, Elrod JW, Grisham MB, Jackson TH, Lefer DJ, Alexander JS (2003) Increased disease activity in eNOS-deficient mice in experimental colitis. Free Radic Biol Med 35(12):1679–1687

    Article  CAS  PubMed  Google Scholar 

  • Schneemann M, Schoedon G (2002) Species differences in macrophage NO production are important. Nat Immunol 3(2):102. doi:10.1038/ni0202-102a

    Article  CAS  PubMed  Google Scholar 

  • Schneemann M, Schoedon G, Hofer S, Blau N, Guerrero L, Schaffner A (1993) Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis 167(6):1358–1363

    Article  CAS  PubMed  Google Scholar 

  • Schwartz C, Beck K, Mink S, Schmolke M, Budde B, Wenning D, Klempnauer KH (2003) Recruitment of p300 by C/EBPbeta triggers phosphorylation of p300 and modulates coactivator activity. EMBO J 22(4):882–892. doi:10.1093/emboj/cdg076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seimetz M, Parajuli N, Pichl A, Veit F, Kwapiszewska G, Weisel FC, Milger K, Egemnazarov B, Turowska A, Fuchs B, Nikam S, Roth M, Sydykov A, Medebach T, Klepetko W, Jaksch P, Dumitrascu R, Garn H, Voswinckel R, Kostin S, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Weissmann N (2011) Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell 147(2):293–305. doi:10.1016/j.cell.2011.08.035

    Article  CAS  PubMed  Google Scholar 

  • Sen N, Hara MR, Kornberg MD, Cascio MB, B-i B, Shahani N, Thomas B, Dawson TM, Dawson VL, Snyder SH, Sawa A (2008) Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol 10:866–873. doi:10.1038/ncb1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serbina NV, Salazar-Mather TP, Biron CA, Kuziel WA, Pamer EG (2003) TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Sha Y, Pandit L, Zeng S, Eissa NT (2009) A critical role for CHIP in the aggresome pathway. Mol Cell Biol 29(1):116–128. doi:10.1128/MCB.00829-08

    Article  CAS  PubMed  Google Scholar 

  • Sheffler LA, Wink DA, Melillo G, Cox GW (1995) Exogenous nitric oxide regulates IFN-gamma plus lipopolysaccharide-induced nitric oxide synthase expression in mouse macrophages. J Immunol 155(2):886–894

    CAS  PubMed  Google Scholar 

  • Shyu AB, Belasco JG, Greenberg ME (1991) Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev 5(2):221–231

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Arteel GE (2000) Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radic Biol Med 28(10):1451–1455

    Article  CAS  PubMed  Google Scholar 

  • Sies H, Sharov VS, Klotz LO, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272(44):27812–27817

    Article  CAS  PubMed  Google Scholar 

  • Sigala F, Savvari P, Liontos M, Sigalas P, Pateras IS, Papalampros A, Basdra EK, Kolettas E, Papavassiliou AG, Gorgoulis VG (2010) Increased expression of bFGF is associated with carotid atherosclerotic plaques instability engaging the NF-kappaB pathway. J Cell Mol Med 14(9):2273–2280. doi:10.1111/j.1582-4934.2010.01082.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonetti O, Lucarini G, Campanati A, Goteri G, Zizzi A, Marconi B, Ganzetti G, Minardi D, Di Primio R, Offidani A (2009) VEGF, survivin and NOS overexpression in psoriatic skin: critical role of nitric oxide synthases. J Dermatol Sci 54(3):205–208. doi:10.1016/j.jdermsci.2008.12.012

    Article  CAS  PubMed  Google Scholar 

  • Stadler J, Trockfeld J, Schmalix WA, Brill T, Siewert JR, Greim H, Doehmer J (1994) Inhibition of cytochromes P4501A by nitric oxide. Proc Natl Acad Sci USA 91(9):3559–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411(2–3):217–230

    Article  CAS  PubMed  Google Scholar 

  • Szabo C (1996) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 21:855–869

    Article  CAS  PubMed  Google Scholar 

  • Takata H, Yamada H, Kawahito H, Kishida S, Irie D, Kato T, Wakana N, Miyagawa S, Fukui K, Matsubara H (2013) Vascular angiotensin II type 2 receptor attenuates atherosclerosis via a kinin/NO-dependent mechanism. J Renin Angiotensin Aldosterone Syst JRAAS 16:311–320. doi:10.1177/1470320313491794

    Article  PubMed  CAS  Google Scholar 

  • Taylor BS, de Vera ME, Ganster RW, Wang Q, Shapiro RA, Morris SM Jr, Billiar TR, Geller DA (1998) Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem 273(24):15148–15156

    Article  CAS  PubMed  Google Scholar 

  • Tezuka H, Abe Y, Iwata M, Takeuchi H, Ishikawa H, Matsushita M, Shiohara T, Akira S, Ohteki T (2007) Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 448(7156):929–933. doi:10.1038/nature06033

    Article  CAS  PubMed  Google Scholar 

  • Tun X, Yasukawa K, Yamada K (2014) Involvement of nitric oxide with activation of Toll-like receptor 4 signaling in mice with dextran sodium sulfate-induced colitis. Free Radic Biol Med 74:108–117. doi:10.1016/j.freeradbiomed.2014.06.020

    Article  CAS  PubMed  Google Scholar 

  • Venkataramana S, Lourenssen S, Miller KG, Blennerhassett MG (2015) Early inflammatory damage to intestinal neurons occurs via inducible nitric oxide synthase. Neurobiol Dis 75:40–52. doi:10.1016/j.nbd.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  • Vig M, Srivastava S, Kandpal U, Sade H, Lewis V, Sarin A, George A, Bal V, Durdik JM, Rath S (2004) Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J Clin Invest 113(12):1734–1742. doi:10.1172/JCI20225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WW, Jenkinson CP, Griscavage JM, Kern RM, Arabolos NS, Byrns RE, Cederbaum SD, Ignarro LJ (1995) Co-induction of arginase and nitric oxide synthase in murine macrophages activated by lipopolysaccharide. Biochem Biophys Res Commun 210(3):1009–1016. doi:10.1006/bbrc.1995.1757

    Article  CAS  PubMed  Google Scholar 

  • Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375(6530):408–411. doi:10.1038/375408a0

    Article  CAS  PubMed  Google Scholar 

  • Weinberg JB, Misukonis MA, Shami PJ, Mason SN, Sauls DL, Dittman WA, Wood ER, Smith GK, McDonald B, Bachus KE et al (1995) Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood 86(3):1184–1195

    CAS  PubMed  Google Scholar 

  • Wells SM, Holian A (2007) Asymmetric dimethylarginine induces oxidative and nitrosative stress in murine lung epithelial cells. Am J Respir Cell Mol Biol 36(5):520–528. doi:10.1165/rcmb.2006-0302SM

    Article  CAS  PubMed  Google Scholar 

  • Werner ER, Werner-Felmayer G, Mayer B (1998) Tetrahydrobiopterin, cytokines, and nitric oxide synthesis. Proc Soc Exp Biol Med 219(3):171–182

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25(4–5):434–456

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Hanbauer I, Laval F, Cook JA, Krishna MC, Mitchell JB (1994) Nitric oxide protects against the cytotoxic effects of reactive oxygen species. Ann N Y Acad Sci 738:265–278

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS et al (1991) DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 254(5034):1001–1003

    Article  CAS  PubMed  Google Scholar 

  • Wink DA, Osawa Y, Darbyshire JF, Jones CR, Eshenaur SC, Nims RW (1993) Inhibition of cytochromes P450 by nitric oxide and a nitric oxide-releasing agent. Arch Biochem Biophys 300(1):115–123. doi:10.1006/abbi.1993.1016

    Article  CAS  PubMed  Google Scholar 

  • Xie QW, Cho H, Kashiwabara Y, Baum M, Weidner JR, Elliston K, Mumford R, Nathan C (1994a) Carboxyl terminus of inducible nitric oxide synthase. Contribution to NADPH binding and enzymatic activity. J Biol Chem 269(45):28500–28505

    CAS  PubMed  Google Scholar 

  • Xie QW, Kashiwabara Y, Nathan C (1994b) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269(7):4705–4708

    CAS  PubMed  Google Scholar 

  • Xie QW, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Troso T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science 256(5054):225–228

    Article  CAS  PubMed  Google Scholar 

  • Xie QW, Leung M, Fuortes M, Sassa S, Nathan C (1996) Complementation analysis of mutants of nitric oxide synthase reveals that the active site requires two hemes. Proc Natl Acad Sci USA 93(10):4891–4896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie QW, Whisnant R, Nathan C (1993) Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med 177(6):1779–1784

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhou X, Yuan D, Xu Y, He P (2013) Caveolin-1 scaffolding domain promotes leukocyte adhesion by reduced basal endothelial nitric oxide-mediated ICAM-1 phosphorylation in rat mesenteric venules. Am J Phys Heart Circ Phys 305(10):H1484–H1493. doi:10.1152/ajpheart.00382.2013

    CAS  Google Scholar 

  • Yadav R, Samuni Y, Abramson A, Zeltser R, Casap N, Kabiraj TK, Banach ML, Samuni U (2014) Pro-oxidative synergic bactericidal effect of NO: kinetics and inhibition by nitroxides. Free Radic Biol Med 67:248–254. doi:10.1016/j.freeradbiomed.2013.10.012

    Article  CAS  PubMed  Google Scholar 

  • Yamakura F, Taka H, Fujimura T, Murayama K (1998) Inactivation of human manganese-superoxide dismutase by peroxynitrite is caused by exclusive nitration of tyrosine 34 to 3-nitrotyrosine. J Biol Chem 273(23):14085–14089

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka Y, Yamamuro A, Maeda S (2003) Nitric oxide at a low concentration protects murine macrophage RAW264 cells against nitric oxide-induced death via cGMP signaling pathway. Br J Pharmacol 139:28–34. doi:10.1038/sj.bjp.0705206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Xia X, Kone BC (2005) Expression profile of a human inducible nitric oxide synthase promoter reporter in transgenic mice during endotoxemia. Am J Physiol Renal Physiol 288(1):F214–F220. doi:10.1152/ajprenal.00258.2004

    Article  CAS  PubMed  Google Scholar 

  • Zamora R, Alarcon L, Vodovotz Y, Betten B, Kim PKM, Gibson KF, Billiar TR (2001) Nitric oxide suppresses the expression of Bcl-2 binding protein BNIP3 in hepatocytes. J Biol Chem 276:46887–46895. doi:10.1074/jbc.M101865200

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Cui A, Wang F, Wang XJ, Chen X, Jin ML, Huang KW (2012) Characteristics of pulmonary inflammation in combined pulmonary fibrosis and emphysema. Chin Med J 125(17):3015–3021

    CAS  PubMed  Google Scholar 

  • Zunic G, Supic G, Magic Z, Draskovic B, Vasiljevska M (2009) Increased nitric oxide formation followed by increased arginase activity induces relative lack of arginine at the wound site and alters whole nutritional status in rats almost within the early healing period. Nitric Oxide Biol Chem Off J Nitric Oxide Soc 20(4):253–258. doi:10.1016/j.niox.2009.01.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Choy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lee, M., Rey, K., Besler, K., Wang, C., Choy, J. (2017). Immunobiology of Nitric Oxide and Regulation of Inducible Nitric Oxide Synthase. In: Kloc, M. (eds) Macrophages. Results and Problems in Cell Differentiation, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-319-54090-0_8

Download citation

Publish with us

Policies and ethics